For drifted Brownian motion X(t) = x − μt + Bt (μ > 0) starting from x > 0, we study the joint distribution of the first-passage time below zero, τ (x), and the firstpassage area, A(x), swept out by X till the time τ (x). In particular, we establish differential equations with boundary conditions for the joint moments E[τ (x)mA(x)n], and we present an algorithm to find recursively them, for any m and n. Finally, the expected value of the time average of X till the time τ (x) is obtained

Abundo, M. (2017). On the joint distribution of first-passage time and first-passage area of drifted Brownian motion. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 19(3), 985-996 [10.1007/s11009-017-9546-7].

On the joint distribution of first-passage time and first-passage area of drifted Brownian motion

abundo mario
2017-01-01

Abstract

For drifted Brownian motion X(t) = x − μt + Bt (μ > 0) starting from x > 0, we study the joint distribution of the first-passage time below zero, τ (x), and the firstpassage area, A(x), swept out by X till the time τ (x). In particular, we establish differential equations with boundary conditions for the joint moments E[τ (x)mA(x)n], and we present an algorithm to find recursively them, for any m and n. Finally, the expected value of the time average of X till the time τ (x) is obtained
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
First-passage area; First-passage time; One-dimensional diffusion;
First-passage time · First-passage area · One-dimensional diffusion
Abundo, M. (2017). On the joint distribution of first-passage time and first-passage area of drifted Brownian motion. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 19(3), 985-996 [10.1007/s11009-017-9546-7].
Abundo, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
abundo17b.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 516.07 kB
Formato Adobe PDF
516.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/200169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact