We investigate certain categories, associated by Fiebig with the geometric representation of a Coxeter system, via sheaves on Bruhat graphs. We modify Fiebig's definition of translation functors in order to extend it to the singular setting and use it to categorify a parabolic Hecke module. As an application we obtain a combinatorial description of indecomposable projective objects of (truncated) noncritical singular blocks of (a deformed version of) category O, using indecomposable special modules over the structure algebra of the corresponding Bruhat graph.
Lanini, M. (2014). Categorification of a parabolic Hecke module via sheaves on moment graphs. PACIFIC JOURNAL OF MATHEMATICS, 271(2), 415-444 [10.2140/pjm.2014.271.415].
Categorification of a parabolic Hecke module via sheaves on moment graphs
Lanini M.
2014-01-01
Abstract
We investigate certain categories, associated by Fiebig with the geometric representation of a Coxeter system, via sheaves on Bruhat graphs. We modify Fiebig's definition of translation functors in order to extend it to the singular setting and use it to categorify a parabolic Hecke module. As an application we obtain a combinatorial description of indecomposable projective objects of (truncated) noncritical singular blocks of (a deformed version of) category O, using indecomposable special modules over the structure algebra of the corresponding Bruhat graph.File | Dimensione | Formato | |
---|---|---|---|
CatParHecke_PacificJM.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
491.51 kB
Formato
Adobe PDF
|
491.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.