In this work we discuss some appearances of semi-infi nite combinatorics in representation theory. We propose a semi-in finite moment graph theory and we motivate it by considering the (not yet rigorously de fined) geometric side of the story. We show that it is possible to compute stalks of the local intersection cohomology of the semi-infinite flag variety, and hence of spaces of quasi maps, by performing an algorithm due to Braden and MacPherson.

Lanini, M. (2017). Semi-infinite combinatorics in representation theory. In G.L. Henning Krause (Universität Bielefeld (a cura di), Representation Theory – Current Trends and Perspectives (pp. 501-518). Zurich : European Mathematical Society Publishing House [10.4171/171-1/16].

Semi-infinite combinatorics in representation theory

Lanini, Martina
2017-01-01

Abstract

In this work we discuss some appearances of semi-infi nite combinatorics in representation theory. We propose a semi-in finite moment graph theory and we motivate it by considering the (not yet rigorously de fined) geometric side of the story. We show that it is possible to compute stalks of the local intersection cohomology of the semi-infinite flag variety, and hence of spaces of quasi maps, by performing an algorithm due to Braden and MacPherson.
2017
Settore MAT/02 - ALGEBRA
English
Rilevanza internazionale
Articolo scientifico in atti di convegno
Moment graphs, semi-infinite order, character formulae
Lanini, M. (2017). Semi-infinite combinatorics in representation theory. In G.L. Henning Krause (Universität Bielefeld (a cura di), Representation Theory – Current Trends and Perspectives (pp. 501-518). Zurich : European Mathematical Society Publishing House [10.4171/171-1/16].
Lanini, M
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
Lanini_SemiInfinite.pdf

solo utenti autorizzati

Descrizione: articolo principale
Licenza: Copyright dell'editore
Dimensione 439.24 kB
Formato Adobe PDF
439.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/199852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact