Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random walk since the computation of the Perron vector x of S can be tackled by solving a suitable M -matrix linear system Mx = y, where M = I - tau A, A is a column stochastic matrix and tau is a positive coefficient smaller than one. The Pagerank centrality index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the EulerRichardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties discussed. Numerical tests performed on real -world datasets are presented, showing the advantages given by the use of the proposed Householder -Richardson method.

Cipolla, S., Di Fiore, C., Tudisco, F. (2017). Euler-Richardson method preconditioned by weakly stochastic matrix algebras: a potential contribution to pagerank computation. THE ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 32, 254-272 [10.13001/1081-3810.3343].

Euler-Richardson method preconditioned by weakly stochastic matrix algebras: a potential contribution to pagerank computation

Cipolla S.;Di Fiore C.;Tudisco F.
2017-01-01

Abstract

Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random walk since the computation of the Perron vector x of S can be tackled by solving a suitable M -matrix linear system Mx = y, where M = I - tau A, A is a column stochastic matrix and tau is a positive coefficient smaller than one. The Pagerank centrality index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the EulerRichardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties discussed. Numerical tests performed on real -world datasets are presented, showing the advantages given by the use of the proposed Householder -Richardson method.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
matrix algebras; preconditioning; nonnegative matrices; pagerank
Cipolla, S., Di Fiore, C., Tudisco, F. (2017). Euler-Richardson method preconditioned by weakly stochastic matrix algebras: a potential contribution to pagerank computation. THE ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 32, 254-272 [10.13001/1081-3810.3343].
Cipolla, S; Di Fiore, C; Tudisco, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cipEuler_Richardson_method_preconditioned_by_matrix_algebras.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 507.07 kB
Formato Adobe PDF
507.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/199265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact