In this paper we develop a blow-up analysis for solutions of an elliptic PDE of Liouville type over the plane. Such solutions describe the behavior of cosmic strings (parallel in a given direction) for a W-boson model coupled with Einstein's equation. We show how the blow-up behavior of the solutions is characterized, according to the physical parameters involved, by new and surprising phenomena. For example in some cases, after a suitable scaling, the blow-up profile of the solution is described in terms of an equations that bares a geometrical meaning in the context of the “uniformization” of the Riemann sphere with conical singularities.

Tarantello, G. (2017). Blow-up analysis for a cosmic strings equation. JOURNAL OF FUNCTIONAL ANALYSIS, 272(1), 255-338 [10.1016/j.jfa.2016.10.009].

Blow-up analysis for a cosmic strings equation

Tarantello G.
2017-01-01

Abstract

In this paper we develop a blow-up analysis for solutions of an elliptic PDE of Liouville type over the plane. Such solutions describe the behavior of cosmic strings (parallel in a given direction) for a W-boson model coupled with Einstein's equation. We show how the blow-up behavior of the solutions is characterized, according to the physical parameters involved, by new and surprising phenomena. For example in some cases, after a suitable scaling, the blow-up profile of the solution is described in terms of an equations that bares a geometrical meaning in the context of the “uniformization” of the Riemann sphere with conical singularities.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Liouville-type equations; Blow-up analysis; Conical singularities
Tarantello, G. (2017). Blow-up analysis for a cosmic strings equation. JOURNAL OF FUNCTIONAL ANALYSIS, 272(1), 255-338 [10.1016/j.jfa.2016.10.009].
Tarantello, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Cosmic stringgs JFA.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/198714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact