A notion of distance between von Neumann algebras appers to be a useful tool in order to study the dependence of the algebras of local observables of QFT from the parameters of the model. We report here on work in which such a notion is defined by dualizing Rieffel‚s quantum Gromov–Hausdorff distance between compact quantum metric spaces. A simple application to the mass dependence of the algebras generated by a free quantum field is also presented.

Guido, D., Marotta, N., Morsella, G., Suriano, L. (2017). A quantum distance between von Neumann algebras and applications to quantum field theory. In Proceedings of the MG14 Meeting on General Relativity (pp. 3870-3875). World Scientific [10.1142/9789813226609_0513].

A quantum distance between von Neumann algebras and applications to quantum field theory

Guido, Daniele;Morsella, Gerardo
;
Suriano, Luca
2017-12

Abstract

A notion of distance between von Neumann algebras appers to be a useful tool in order to study the dependence of the algebras of local observables of QFT from the parameters of the model. We report here on work in which such a notion is defined by dualizing Rieffel‚s quantum Gromov–Hausdorff distance between compact quantum metric spaces. A simple application to the mass dependence of the algebras generated by a free quantum field is also presented.
Settore MAT/05 - Analisi Matematica
English
Rilevanza internazionale
Articolo scientifico in atti di convegno
Noncommutative geometry; quantum Gromov–Hausdorff distance; algebraic QFT
Guido, D., Marotta, N., Morsella, G., Suriano, L. (2017). A quantum distance between von Neumann algebras and applications to quantum field theory. In Proceedings of the MG14 Meeting on General Relativity (pp. 3870-3875). World Scientific [10.1142/9789813226609_0513].
Guido, D; Marotta, N; Morsella, G; Suriano, L
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
MGrossmannProc.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 250.44 kB
Formato Adobe PDF
250.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/198597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact