The paper presents an analytic stiffness matrix for curved thin metal wires, derived by the application of the second Castigliano’s Theorem. The matrix accounts both bending and axial stiffness contributions in plane. The beam geometry is described by a cubic polynomial function of the curvature radius with a monotonical attitude angle as the independent variable. The solution proposed if fully analytical although a consistent number of adding factors appear. Some test cases are discussed and compared with Finite Element solutions, formed by a plentiful assembly of straight beams.

Salvini, P., Marotta, E. (2018). Analytical Stiffness Matrix for Curved Metal Wires. PROCEDIA STRUCTURAL INTEGRITY, 8, 43-55 [10.1016/j.prostr.2017.12.007].

Analytical Stiffness Matrix for Curved Metal Wires

SALVINI P
;
MAROTTA E
2018-01-01

Abstract

The paper presents an analytic stiffness matrix for curved thin metal wires, derived by the application of the second Castigliano’s Theorem. The matrix accounts both bending and axial stiffness contributions in plane. The beam geometry is described by a cubic polynomial function of the curvature radius with a monotonical attitude angle as the independent variable. The solution proposed if fully analytical although a consistent number of adding factors appear. Some test cases are discussed and compared with Finite Element solutions, formed by a plentiful assembly of straight beams.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/14 - PROGETTAZIONE MECCANICA E COSTRUZIONE DI MACCHINE
English
Stiffness Matrix; Curved Beam, Metal Wires; Net Structures; Cubic Interpolation
Salvini, P., Marotta, E. (2018). Analytical Stiffness Matrix for Curved Metal Wires. PROCEDIA STRUCTURAL INTEGRITY, 8, 43-55 [10.1016/j.prostr.2017.12.007].
Salvini, P; Marotta, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
162_Analytical_Stiffness.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/197956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact