The paper is concerned with black-box nonlinear constrained multiobjective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints.We show that the hybrid method performs well also on this industrial problem.

Campana, E.f., Diez, M., Liuzzi, G., Lucidi, S., Pellegrini, R., Piccialli, V., et al. (2017). A Multi-objective DIRECT algorithm for ship hull optimization. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 71(1), 53-72 [10.1007/s10589-017-9955-0].

A Multi-objective DIRECT algorithm for ship hull optimization

Piccialli V;
2017

Abstract

The paper is concerned with black-box nonlinear constrained multiobjective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints.We show that the hybrid method performs well also on this industrial problem.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/09 - Ricerca Operativa
English
Con Impact Factor ISI
Multi-objective nonlinear programming
Derivative-free optimization
DIRECT-type algorithm
Campana, E.f., Diez, M., Liuzzi, G., Lucidi, S., Pellegrini, R., Piccialli, V., et al. (2017). A Multi-objective DIRECT algorithm for ship hull optimization. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 71(1), 53-72 [10.1007/s10589-017-9955-0].
Campana, Ef; Diez, M; Liuzzi, G; Lucidi, S; Pellegrini, R; Piccialli, V; Rinaldi, F; Serani, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Direct_multiObjective_2017.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/194867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 15
social impact