Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases.
D'Ambrosi, N., Cozzolino, M., Carrì, M.t. (2018). Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. ANTIOXIDANTS & REDOX SIGNALING, 29(1), 15-36 [10.1089/ars.2017.7271].
Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation
D'Ambrosi, Nadia;Carrì, Maria Teresa
2018-01-01
Abstract
Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.