A small library of pentacyclic quinoid compounds, called KuQuinones (KuQs), has been prepared through a one-pot reaction. KuQuinones complex structure is made up by two naphthoquinone units connected by a five-membered ring. Due to KuQs structural features, keto-enol tautomerization in solution likely occurs, leading to the generation of four different species, i.e., the enol, the enolate, the external enol and the diquinoid species. The interchange among KuQ tautomers leads to substantial spectral variations of the dye depending on the experimental conditions used. The comprehension of tautomeric equilibria of this new class of quinoid compounds is strongly required in order to explain their behavior in solution and in biological environment. UV-vis,1H NMR spectroscopies, and DFT calculations resulted appropriate tools to understand the nature of the prevalent KuQuinone species in solution. Moreover, due to the structural similarity of KuQuinones with camptothecin (CPT), a largely used anticancer agent, KuQs have been tested against Cisplatin-resistant SKOV3 and SW480 cancer cell lines. Results highlighted that KuQs are highly active toward the analyzed cell lines and almost nontoxic for healthy cell, indicating a high specific activity.
Sabuzi, F., Lentini, S., Sforza, F., Pezzola, S., Fratelli, S., Bortolini, O., et al. (2017). KuQuinones equilibria assessment for biomedical applications. JOURNAL OF ORGANIC CHEMISTRY, 82(19), 10129-10138 [10.1021/acs.joc.7b01602].
KuQuinones equilibria assessment for biomedical applications
Sabuzi F.Membro del Collaboration Group
;Lentini S.Investigation
;Pezzola S.Membro del Collaboration Group
;Floris B.Membro del Collaboration Group
;Conte V.Membro del Collaboration Group
;Galloni P.
Membro del Collaboration Group
2017-10-01
Abstract
A small library of pentacyclic quinoid compounds, called KuQuinones (KuQs), has been prepared through a one-pot reaction. KuQuinones complex structure is made up by two naphthoquinone units connected by a five-membered ring. Due to KuQs structural features, keto-enol tautomerization in solution likely occurs, leading to the generation of four different species, i.e., the enol, the enolate, the external enol and the diquinoid species. The interchange among KuQ tautomers leads to substantial spectral variations of the dye depending on the experimental conditions used. The comprehension of tautomeric equilibria of this new class of quinoid compounds is strongly required in order to explain their behavior in solution and in biological environment. UV-vis,1H NMR spectroscopies, and DFT calculations resulted appropriate tools to understand the nature of the prevalent KuQuinone species in solution. Moreover, due to the structural similarity of KuQuinones with camptothecin (CPT), a largely used anticancer agent, KuQs have been tested against Cisplatin-resistant SKOV3 and SW480 cancer cell lines. Results highlighted that KuQs are highly active toward the analyzed cell lines and almost nontoxic for healthy cell, indicating a high specific activity.File | Dimensione | Formato | |
---|---|---|---|
J. Org. Chem. 2017, 82, 10129 (KuQ equil).pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.