The aim of this paper is two--fold. We first strongly improve our previous main result published in Proc. Math. Am. Soc., concerning classification of irreducible components of the Brill--Noether locus parametrizing rank 2 semistable vector bundles of suitable degrees $d$, with at least $d-2g+4$ independent global sections, on a general $\nu$--gonal curve $C$ of genus $g$. We then uses this classification to study several properties of the Hilbert scheme of suitable surface scrolls in projective space, which turn out to be special and stable.
Flamini, F., Choi, Y., Kim, S. (2018). Moduli spaces of bundles and of Hilbert schemes over $\nu$-gonal curve. COLLECTANEA MATHEMATICA, 70, 295-321 [10.1007/s13348-018-0231-0].
Moduli spaces of bundles and of Hilbert schemes over $\nu$-gonal curve
Flamini F;
2018-08-22
Abstract
The aim of this paper is two--fold. We first strongly improve our previous main result published in Proc. Math. Am. Soc., concerning classification of irreducible components of the Brill--Noether locus parametrizing rank 2 semistable vector bundles of suitable degrees $d$, with at least $d-2g+4$ independent global sections, on a general $\nu$--gonal curve $C$ of genus $g$. We then uses this classification to study several properties of the Hilbert scheme of suitable surface scrolls in projective space, which turn out to be special and stable.File | Dimensione | Formato | |
---|---|---|---|
CollMath2018PubFinal.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
638.16 kB
Formato
Adobe PDF
|
638.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.