The aim of this paper is two--fold. We first strongly improve our previous main result published in Proc. Math. Am. Soc., concerning classification of irreducible components of the Brill--Noether locus parametrizing rank 2 semistable vector bundles of suitable degrees $d$, with at least $d-2g+4$ independent global sections, on a general $\nu$--gonal curve $C$ of genus $g$. We then uses this classification to study several properties of the Hilbert scheme of suitable surface scrolls in projective space, which turn out to be special and stable.

Flamini, F., Choi, Y., Kim, S. (2018). Moduli spaces of bundles and of Hilbert schemes over $\nu$-gonal curve. COLLECTANEA MATHEMATICA, 70, 295-321 [10.1007/s13348-018-0231-0].

Moduli spaces of bundles and of Hilbert schemes over $\nu$-gonal curve

Flamini F;
2018-08-22

Abstract

The aim of this paper is two--fold. We first strongly improve our previous main result published in Proc. Math. Am. Soc., concerning classification of irreducible components of the Brill--Noether locus parametrizing rank 2 semistable vector bundles of suitable degrees $d$, with at least $d-2g+4$ independent global sections, on a general $\nu$--gonal curve $C$ of genus $g$. We then uses this classification to study several properties of the Hilbert scheme of suitable surface scrolls in projective space, which turn out to be special and stable.
22-ago-2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Vector bundles, moduli spaces, gonality, Hilbert schemes
https://link.springer.com/article/10.1007/s13348-018-0231-0
Flamini, F., Choi, Y., Kim, S. (2018). Moduli spaces of bundles and of Hilbert schemes over $\nu$-gonal curve. COLLECTANEA MATHEMATICA, 70, 295-321 [10.1007/s13348-018-0231-0].
Flamini, F; Choi, Y; Kim, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CollMath2018PubFinal.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 638.16 kB
Formato Adobe PDF
638.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/192633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact