In a separable Banach spaceE, we study the invariance of a closed set Kunder the action of the evolution equation associated with a maximal dissipative linear operator Aperturbed by a quasi-dissipative continuous termB. Using the distance to the closed set, we give a general necessary and sufficient condition for the invariance ofK. Then, we apply our result to several examples of partial differential equations in Banach and Hilbert spaces.

Cannarsa, P., Da Prato, G., & Frankowska, H. (2018). Invariance for quasi-dissipative systems in Banach spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 457(2), 1173-1187 [10.1016/j.jmaa.2016.11.087].

Invariance for quasi-dissipative systems in Banach spaces

Cannarsa P.
;
2018

Abstract

In a separable Banach spaceE, we study the invariance of a closed set Kunder the action of the evolution equation associated with a maximal dissipative linear operator Aperturbed by a quasi-dissipative continuous termB. Using the distance to the closed set, we give a general necessary and sufficient condition for the invariance ofK. Then, we apply our result to several examples of partial differential equations in Banach and Hilbert spaces.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Evolution equations; invariance; dissipative operators; distance function
Cannarsa, P., Da Prato, G., & Frankowska, H. (2018). Invariance for quasi-dissipative systems in Banach spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 457(2), 1173-1187 [10.1016/j.jmaa.2016.11.087].
Cannarsa, P; Da Prato, G; Frankowska, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CDPF_invariance16.pdf

accesso solo dalla rete interna

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 291.71 kB
Formato Adobe PDF
291.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/191794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact