The cathodic deposition of poly(styrene sulfonate) on nanoarchitectured TiO2 electrodes is explored by cyclic voltammetry and potentiostatic and galvanostatic experiments, showing a diffusion-controlled deposition described by Cottrell's law. The structure and composition of the polymer is evidenced by various spectroscopic techniques, including nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy, and its morphology is studied by scanning electron microscopy. The average chain length can be estimated from the NMR spectra. The electropolymerization mechanism initiates by radical anion formation. The cycling behavior in half-cell batteries against Li metal is excellent, especially at high rates explored up to 10 C. The areal insertion capacity is above recent literature results, up to 80 μA h cm-2. The combination of normalized areal power density and areal energy density is one of the best reported in the literature.

Braglia, M., Ferrari, I.v., Djenizian, T., Kaciulis, S., Soltani, P., Di Vona, M.l., et al. (2017). Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes. ACS APPLIED MATERIALS & INTERFACES, 9(27), 22902-22910 [10.1021/acsami.7b04335].

Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes

Braglia M.;Ferrari I. V.;Soltani P.;Di Vona M. L.
;
2017-01-01

Abstract

The cathodic deposition of poly(styrene sulfonate) on nanoarchitectured TiO2 electrodes is explored by cyclic voltammetry and potentiostatic and galvanostatic experiments, showing a diffusion-controlled deposition described by Cottrell's law. The structure and composition of the polymer is evidenced by various spectroscopic techniques, including nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy, and its morphology is studied by scanning electron microscopy. The average chain length can be estimated from the NMR spectra. The electropolymerization mechanism initiates by radical anion formation. The cycling behavior in half-cell batteries against Li metal is excellent, especially at high rates explored up to 10 C. The areal insertion capacity is above recent literature results, up to 80 μA h cm-2. The combination of normalized areal power density and areal energy density is one of the best reported in the literature.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/03 - Chimica Generale e Inorganica
English
Li battery; PSS; TiO2 nanotubes; aromatic polymer; insertion capacity; solid electrolyte
Braglia, M., Ferrari, I.v., Djenizian, T., Kaciulis, S., Soltani, P., Di Vona, M.l., et al. (2017). Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes. ACS APPLIED MATERIALS & INTERFACES, 9(27), 22902-22910 [10.1021/acsami.7b04335].
Braglia, M; Ferrari, Iv; Djenizian, T; Kaciulis, S; Soltani, P; Di Vona, Ml; Knauth, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ACS 2017.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/191338
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact