During the peak of their accretion phase, supermassive black holes in galactic cores are known to emit very high levels of ionizing radiation, becoming visible over intergalactic distances as quasars or active galactic nuclei (AGN). Here, we quantify the extent to which the activity of the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), may have affected the habitability of Earth-like planets in our Galaxy. We focus on the amount of atmospheric loss and on the possible biological damage suffered by planets exposed to X-ray and extreme ultraviolet (XUV) radiation produced during the peak of the active phase of Sgr A*. We find that terrestrial planets could lose a total atmospheric mass comparable to that of present day Earth even at large distances (~1 kiloparsec) from the galactic center. Furthermore, we find that the direct biological damage caused by Sgr A* to surface life on planets not properly screened by an atmosphere was probably significant during the AGN phase, possibly hindering the development of complex life within a few kiloparsecs from the galactic center.

Balbi, A., Tombesi, F. (2017). The habitability of the Milky Way during the active phase of its central supermassive black hole. SCIENTIFIC REPORTS, 7(1) [10.1038/s41598-017-16110-0].

The habitability of the Milky Way during the active phase of its central supermassive black hole

Balbi, A;Tombesi, F
2017-01-01

Abstract

During the peak of their accretion phase, supermassive black holes in galactic cores are known to emit very high levels of ionizing radiation, becoming visible over intergalactic distances as quasars or active galactic nuclei (AGN). Here, we quantify the extent to which the activity of the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), may have affected the habitability of Earth-like planets in our Galaxy. We focus on the amount of atmospheric loss and on the possible biological damage suffered by planets exposed to X-ray and extreme ultraviolet (XUV) radiation produced during the peak of the active phase of Sgr A*. We find that terrestrial planets could lose a total atmospheric mass comparable to that of present day Earth even at large distances (~1 kiloparsec) from the galactic center. Furthermore, we find that the direct biological damage caused by Sgr A* to surface life on planets not properly screened by an atmosphere was probably significant during the AGN phase, possibly hindering the development of complex life within a few kiloparsecs from the galactic center.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Balbi, A., Tombesi, F. (2017). The habitability of the Milky Way during the active phase of its central supermassive black hole. SCIENTIFIC REPORTS, 7(1) [10.1038/s41598-017-16110-0].
Balbi, A; Tombesi, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1711.11318.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/190983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact