If g is a quasitriangular Lie bialgebra, the formal Poisson group F[[g^*]] can be given a braiding structure. This was achieved by Weinstein and Xu using purely geometrical means, and independently by the authors by means of quantum groups. In this paper we compare these two approaches. First, we show that the braidings they produce share several similar properties (in particular, the construction is functorial); secondly, in the simplest case (G = SL_2) they do coincide. The question then rises of whether they are always the same this is positively answered in a separate paper.
Gavarini, F., Halbout, G. (2003). Braiding structures on formal Poisson groups and classical solutions of the QYBE. JOURNAL OF GEOMETRY AND PHYSICS, 46(3-4), 255-282 [10.1016/S0393-0440(02)00147-X].
Braiding structures on formal Poisson groups and classical solutions of the QYBE
GAVARINI, FABIO;
2003-06-01
Abstract
If g is a quasitriangular Lie bialgebra, the formal Poisson group F[[g^*]] can be given a braiding structure. This was achieved by Weinstein and Xu using purely geometrical means, and independently by the authors by means of quantum groups. In this paper we compare these two approaches. First, we show that the braidings they produce share several similar properties (in particular, the construction is functorial); secondly, in the simplest case (G = SL_2) they do coincide. The question then rises of whether they are always the same this is positively answered in a separate paper.File | Dimensione | Formato | |
---|---|---|---|
Braidings-ART-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
248.62 kB
Formato
Adobe PDF
|
248.62 kB | Adobe PDF | Visualizza/Apri |
Braidings_STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza:
Copyright dell'editore
Dimensione
263.86 kB
Formato
Adobe PDF
|
263.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
275.64 kB
Formato
Adobe PDF
|
275.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
152.02 kB
Formato
Adobe PDF
|
152.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.