Hastings studied Carleson measures for non-negative subharmonic functions on the polydisk and characterized them by a certain geometric condition relative to Lebesgue measure $\s$. Cima \& Wogen and Luecking proved analogous results for weighted Bergman spaces on the unit ball and other open subsets of $\mathC^n$. We consider a similar problem on a homogeneous tree, and study how the characterization and properties of Carleson measures for various function spaces depend on the choice of reference measure $\sigma$.
Cohen J., M., Colonna, F., Picardello, A.m., Singman, D. (2016). Bergman Spaces and Carleson Measures on Homogeneous Isotropic Trees. POTENTIAL ANALYSIS, 44(4), 745-766 [10.1007/s11118-015-9529-7].
Bergman Spaces and Carleson Measures on Homogeneous Isotropic Trees
PICARDELLO, ANGELO MASSIMO;
2016-01-01
Abstract
Hastings studied Carleson measures for non-negative subharmonic functions on the polydisk and characterized them by a certain geometric condition relative to Lebesgue measure $\s$. Cima \& Wogen and Luecking proved analogous results for weighted Bergman spaces on the unit ball and other open subsets of $\mathC^n$. We consider a similar problem on a homogeneous tree, and study how the characterization and properties of Carleson measures for various function spaces depend on the choice of reference measure $\sigma$.File | Dimensione | Formato | |
---|---|---|---|
GalleyProofs_PO-Article_Carleson.pdf
solo utenti autorizzati
Descrizione: Testo dell'articolo: galley proofs
Licenza:
Copyright dell'editore
Dimensione
871.08 kB
Formato
Adobe PDF
|
871.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.