The classification of foliated surfaces (McQuillan in Pure Appl Math Q 4(3):877--1012, 2008) is applied to the study of curves on surfaces with big co-tangent bundle and varying moduli, be it purely in characteristic zero, or, more generally when the characteristic is mixed. Almost everything that one might naively imagine is true, but with one critical exception: rational curves on bi-disc quotients which aren't quotients of products of curves are Zariski dense in mixed characteristic. The logical repercussions in characteristic zero of this exception are not negligible.

McQuillan, M. (2017). Curves on surfaces of mixed characteristic. EUROPEAN JOURNAL OF MATHEMATICS, 3(3), 433-470 [10.1007/s40879-017-0141-9].

Curves on surfaces of mixed characteristic

MCQUILLAN, MICHAEL
2017

Abstract

The classification of foliated surfaces (McQuillan in Pure Appl Math Q 4(3):877--1012, 2008) is applied to the study of curves on surfaces with big co-tangent bundle and varying moduli, be it purely in characteristic zero, or, more generally when the characteristic is mixed. Almost everything that one might naively imagine is true, but with one critical exception: rational curves on bi-disc quotients which aren't quotients of products of curves are Zariski dense in mixed characteristic. The logical repercussions in characteristic zero of this exception are not negligible.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - Geometria
English
https://doi.org/10.1007/s40879-017-0141-9
McQuillan, M. (2017). Curves on surfaces of mixed characteristic. EUROPEAN JOURNAL OF MATHEMATICS, 3(3), 433-470 [10.1007/s40879-017-0141-9].
Mcquillan, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
g2.pdf

non disponibili

Descrizione: The article
Licenza: Copyright dell'editore
Dimensione 766.17 kB
Formato Adobe PDF
766.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/188953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact