We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

Natoli, P., Ashdown, M., Banerji, R., Borrill, J., Buzzelli, A., de Gasperis, G., et al. (2018). Exploring cosmic origins with CORE: mitigation of systematic effects. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(4) [10.1088/1475-7516/2018/04/022].

Exploring cosmic origins with CORE: mitigation of systematic effects

de Gasperis, G;Migliaccio, M;Vittorio, N;
2018-04-05

Abstract

We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - Astronomia e Astrofisica
English
astro-ph.CO; astro-ph.CO; astro-ph.IM
http://arxiv.org/abs/1707.04224v1
Natoli, P., Ashdown, M., Banerji, R., Borrill, J., Buzzelli, A., de Gasperis, G., et al. (2018). Exploring cosmic origins with CORE: mitigation of systematic effects. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(4) [10.1088/1475-7516/2018/04/022].
Natoli, P; Ashdown, M; Banerji, R; Borrill, J; Buzzelli, A; de Gasperis, G; Delabrouille, J; Hivon, E; Molinari, D; Patanchon, G; Polastri, L; Tomasi, M; Bouchet, F; Henrot-Versillé, S; Hoang, D; Keskitalo, R; Kiiveri, K; Kisner, T; Lindholm, V; Mccarthy, D; Piacentini, F; Perdereau, O; Polenta, G; Tristram, M; Achucarro, A; Ade, P; Allison, R; Baccigalupi, C; Ballardini, M; Banday, A; Bartlett, J; Bartolo, N; Basak, S; Baselmans, J; Baumann, D; Bersanelli, M; Bonaldi, A; Bonato, M; Boulanger, F; Brinckmann, T; Bucher, M; Burigana, C; Cai, Z; Calvo, M; Carvalho, C; Castellano, G; Challinor, A; Chluba, J; Clesse, S; Colantoni, I; Coppolecchia, A; Crook, M; D'Alessandro, G; de Bernardis, P; De Zotti, G; Di Valentino, E; Diego, J; Errard, J; Feeney, S; Fernandez-Cobos, R; Finelli, F; Forastieri, F; Galli, S; Genova-Santos, R; Gerbino, M; Gonzalez-Nuevo, J; Grandis, S; Greenslade, J; Gruppuso, A; Hagstotz, S; Hanany, S; Handley, W; Hernandez-Monteagudo, C; Hervias-Caimapo, C; Hills, M; Keihänen, E; Kitching, T; Kunz, M; Kurki-Suonio, H; Lamagna, L; Lasenby, A; Lattanzi, M; Lesgourgues, J; Lewis, A; Liguori, M; López-Caniego, M; Luzzi, G; Maffei, B; Mandolesi, N; Martinez-Gonzalez, E; Martins, C; Masi, S; Melchiorri, A; Melin, J; Migliaccio, M; Monfardini, A; Negrello, M; Notari, A; Pagano, L; Paiella, A; Paoletti, D; Piat, M; Pisano, G; Pollo, A; Poulin, V; Quartin, M; Remazeilles, M; Roman, M; Rossi, G; Rubino-Martin, J; Salvati, L; Signorelli, G; Tartari, A; Tramonte, D; Trappe, N; Trombetti, T; Tucker, C; Valiviita, J; Van de Weijgaert, R; van Tent, B; Vennin, V; Vielva, P; Vittorio, N; Wallis, C; Young, K; Zannoni, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1705.02170v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/188242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact