Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.

Bresciani, A., Missineo, A., Gallo, M., Cerretani, M., Fezzardi, P., Tomei, L., et al. (2017). Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 631, 31-41 [10.1016/j.abb.2017.08.003].

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1)

CICERO, DANIEL OSCAR;
2017

Abstract

Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10
English
Antioxidant; Biochemical methods; Drug discovery; KEAP1; Neurodegeneration; NRF2; Protein-protein interaction;
Bresciani, A., Missineo, A., Gallo, M., Cerretani, M., Fezzardi, P., Tomei, L., et al. (2017). Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 631, 31-41 [10.1016/j.abb.2017.08.003].
Bresciani, A; Missineo, A; Gallo, M; Cerretani, M; Fezzardi, P; Tomei, L; Cicero, Do; Altamura, S; Santoprete, A; Ingenito, R; Bianchi, E; Pacifici, R; Dominguez, C; Munoz Sanjuan, I; Harper, S; Toledo Sherman, L; Park, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/187868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 36
social impact