To accurately time motor responses when intercepting falling balls we rely on an internal model of gravity. However, whether and how such a model is also used to estimate the spatial location of interception is still an open question. Here, we addressed this issue by asking 25 participants to intercept balls projected from a fixed location 6 m in front of them and approaching along trajectories with different arrival locations, flight durations, and gravity accelerations (0g and 1g). The trajectories were displayed in an immersive virtual reality system with a wide field of view. Participants intercepted approaching balls with a racket and they were free to choose the time and place of interception. We found that participants often achieved a better performance with 1g than 0g balls. Moreover, the interception points were distributed along the direction of a 1g path for both 1g and 0g balls. In the latter case, interceptions tended to cluster on the upper half of the racket, indicating that participants aimed at a lower position than the actual 0g path. These results suggest that an internal model of gravity was probably used in predicting the interception locations. However, we found that the difference in performance between 1g and 0g balls was modulated by flight duration, the difference being larger for faster balls. In addition, the number of peaks in the hand speed profiles increased with flight duration suggesting that visual information was used to adjust the motor response, correcting the prediction to some extent.

Russo, M., Cesqui, B., LA SCALEIA, B., Ceccarelli, F., Maselli, A., Moscatelli, A., et al. (2017). Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction. JOURNAL OF NEUROPHYSIOLOGY, 118, 2421-2434 [10.1152/jn.00025.2017].

Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction

RUSSO, MARTA;LA SCALEIA, BARBARA;CECCARELLI, FRANCESCA;MOSCATELLI, ALESSANDRO;Zago, M;LACQUANITI, FRANCESCO;D'Avella, A.
2017-10-01

Abstract

To accurately time motor responses when intercepting falling balls we rely on an internal model of gravity. However, whether and how such a model is also used to estimate the spatial location of interception is still an open question. Here, we addressed this issue by asking 25 participants to intercept balls projected from a fixed location 6 m in front of them and approaching along trajectories with different arrival locations, flight durations, and gravity accelerations (0g and 1g). The trajectories were displayed in an immersive virtual reality system with a wide field of view. Participants intercepted approaching balls with a racket and they were free to choose the time and place of interception. We found that participants often achieved a better performance with 1g than 0g balls. Moreover, the interception points were distributed along the direction of a 1g path for both 1g and 0g balls. In the latter case, interceptions tended to cluster on the upper half of the racket, indicating that participants aimed at a lower position than the actual 0g path. These results suggest that an internal model of gravity was probably used in predicting the interception locations. However, we found that the difference in performance between 1g and 0g balls was modulated by flight duration, the difference being larger for faster balls. In addition, the number of peaks in the hand speed profiles increased with flight duration suggesting that visual information was used to adjust the motor response, correcting the prediction to some extent.
1-ott-2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/09 - FISIOLOGIA
English
Con Impact Factor ISI
gravity; interception; internal model; virtual reality
Russo, M., Cesqui, B., LA SCALEIA, B., Ceccarelli, F., Maselli, A., Moscatelli, A., et al. (2017). Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction. JOURNAL OF NEUROPHYSIOLOGY, 118, 2421-2434 [10.1152/jn.00025.2017].
Russo, M; Cesqui, B; LA SCALEIA, B; Ceccarelli, F; Maselli, A; Moscatelli, A; Zago, M; Lacquaniti, F; D'Avella, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
RUSSO_Intercepting_2017.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/187760
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact