We present a multistage approach to detection and classification of mammographic lesions that is independent of accurate extraction of their contours. The ultimate goal is to discriminate malignant tumors from benign lesions and normal parenchymal tissue in a realistic scenario of lesion candidates automatically detected in mammograms. Local analysis of the Gaussian curvature and of the phase response of multidirectional Gabor filters is performed for identification of suspicious focal areas. The detection of lesions and the classification of malignant tumors are performed in series, respectively, via a differential approach to analysis of the tissue surrounding the candidates and via quantification of nonstationarity and spatial dependence of pixel values within circular and annular regions of interest. A unified 3D free-response receiver operating characteristic framework is applied for global analysis of the two binary categorization problems in series. The system was tested on a total of 2105 full-field digital and screen-film mammograms from three different datasets, including abnormal mammograms with 560 malignant tumors and 639 benign lesions, masses, or architectural distortion, and 1010 normal mammograms. For sensitivity of detection of malignant tumors in the range of 0.70-0.81, the range of falsely detected malignant tumors was 0.82-3.47 per image, with a series of two stages of classification, including stepwise logistic regression for selection of features, Fisher linear discriminant analysis, and two-fold cross-validation.

Casti, P., Mencattini, A., Salmeri, M., Ancona, A., Mangeri, F., Pepe, M., et al. (2016). Contour-independent detection and classification of mammographic lesions. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 25, 165-177 [10.1016/j.bspc.2015.11.010].

Contour-independent detection and classification of mammographic lesions

CASTI, PAOLA;MENCATTINI, ARIANNA;SALMERI, MARCELLO;
2016-01-01

Abstract

We present a multistage approach to detection and classification of mammographic lesions that is independent of accurate extraction of their contours. The ultimate goal is to discriminate malignant tumors from benign lesions and normal parenchymal tissue in a realistic scenario of lesion candidates automatically detected in mammograms. Local analysis of the Gaussian curvature and of the phase response of multidirectional Gabor filters is performed for identification of suspicious focal areas. The detection of lesions and the classification of malignant tumors are performed in series, respectively, via a differential approach to analysis of the tissue surrounding the candidates and via quantification of nonstationarity and spatial dependence of pixel values within circular and annular regions of interest. A unified 3D free-response receiver operating characteristic framework is applied for global analysis of the two binary categorization problems in series. The system was tested on a total of 2105 full-field digital and screen-film mammograms from three different datasets, including abnormal mammograms with 560 malignant tumors and 639 benign lesions, masses, or architectural distortion, and 1010 normal mammograms. For sensitivity of detection of malignant tumors in the range of 0.70-0.81, the range of falsely detected malignant tumors was 0.82-3.47 per image, with a series of two stages of classification, including stepwise logistic regression for selection of features, Fisher linear discriminant analysis, and two-fold cross-validation.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/07 - MISURE ELETTRICHE ED ELETTRONICHE
English
Con Impact Factor ISI
http://dx.medra.org/10.1016/j.bspc.2015.11.010
Casti, P., Mencattini, A., Salmeri, M., Ancona, A., Mangeri, F., Pepe, M., et al. (2016). Contour-independent detection and classification of mammographic lesions. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 25, 165-177 [10.1016/j.bspc.2015.11.010].
Casti, P; Mencattini, A; Salmeri, M; Ancona, A; Mangeri, F; Pepe, M; Rangayyan, Rm
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/185904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 32
social impact