Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.

DI GIOVANNANTONIO, M., Tomellini, M., Lipton Duffin, J., Galeotti, G., Ebrahimi, M., Cossaro, A., et al. (2016). Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 138(51), 16696-16702 [10.1021/jacs.6b09728].

Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization

DI GIOVANNANTONIO, MARCO;TOMELLINI, MASSIMO;CONTINI, GIORGIO
2016-01-01

Abstract

Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/03 - CHIMICA GENERALE E INORGANICA
English
DI GIOVANNANTONIO, M., Tomellini, M., Lipton Duffin, J., Galeotti, G., Ebrahimi, M., Cossaro, A., et al. (2016). Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 138(51), 16696-16702 [10.1021/jacs.6b09728].
DI GIOVANNANTONIO, M; Tomellini, M; Lipton Duffin, J; Galeotti, G; Ebrahimi, M; Cossaro, A; Verdini, A; Kharche, N; Meunier, V; Vasseur, G; Fagot Revurat, Y; Perepichka, D; Rosei, F; Contini, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Di Giovannantonio_jacs138(2016)16696.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 6.38 MB
Formato Adobe PDF
6.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/182316
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 75
social impact