Detonation nanodiamond (ND) particles were dispersed on silicon nitride (SiNx) coated sc-Si substrates by spin-coating technique. Their surface density was in the 1010–1011 cm−2 range. Thermal stability and surface modifications of ND particles were studied by combined use of X-ray Photoelectron Spectroscopy (XPS) and Field Emission Gun Scanning Electron Microscopy (FEG SEM). Different oxygen-containing functional groups could be identified by XPS and their evolution versus UHV annealing temperature (400–1085 °C) could be monitored in situ. The increase of annealing temperature led to a decrease of oxygen bound to carbon. In particular, functional groups where carbon was bound to oxygen via one σ bond (C–OH, C–O–C) started decomposing first. At 970 °C carbon–oxygen components decreased further. However, the sp2/sp3 carbon ratio did not increase, thus confirming that the graphitization of ND requires higher temperatures. XPS analyses also revealed that no interaction of ND particles with the silicon nitride substrate occurred at temperatures up to about 1000 °C. However, at 1050 °C silicon nitride coated substrates started showing patch-like damaged areas attributable to interaction of silicon nitride with the underlying substrate. Nevertheless ND particles were preserved in undamaged areas, with surface densities exceeding 1010 cm−2. These nanoparticles acted as sp3-carbon seeds in a subsequent 15 min Chemical Vapour Deposition run that allowed growing a 60–80 nm diamond film. Our previous study on Si(100) showed that detonation ND particles reacted with silicon between 800 and 900 °C and, as a consequence, no diamond film could be grown after Chemical Vapour Deposition (CVD). These findings demonstrated that the use of a thin silicon nitride buffer layer is preferable insofar as the growth of thin diamond films on silicon devices via nanoseeding is concerned.

Zeppilli, S., Arnault, J., Gesset, G., Bergonzo, P., Polini, R. (2010). Thermal stability and surface modifications of detonation diamond nanoparticles studied with X-ray photoelectron spectroscopy. DIAMOND AND RELATED MATERIALS, 19(7-9), 846-853 [10.1016/j.diamond.2010.02.005].

Thermal stability and surface modifications of detonation diamond nanoparticles studied with X-ray photoelectron spectroscopy

POLINI, RICCARDO
2010-01-01

Abstract

Detonation nanodiamond (ND) particles were dispersed on silicon nitride (SiNx) coated sc-Si substrates by spin-coating technique. Their surface density was in the 1010–1011 cm−2 range. Thermal stability and surface modifications of ND particles were studied by combined use of X-ray Photoelectron Spectroscopy (XPS) and Field Emission Gun Scanning Electron Microscopy (FEG SEM). Different oxygen-containing functional groups could be identified by XPS and their evolution versus UHV annealing temperature (400–1085 °C) could be monitored in situ. The increase of annealing temperature led to a decrease of oxygen bound to carbon. In particular, functional groups where carbon was bound to oxygen via one σ bond (C–OH, C–O–C) started decomposing first. At 970 °C carbon–oxygen components decreased further. However, the sp2/sp3 carbon ratio did not increase, thus confirming that the graphitization of ND requires higher temperatures. XPS analyses also revealed that no interaction of ND particles with the silicon nitride substrate occurred at temperatures up to about 1000 °C. However, at 1050 °C silicon nitride coated substrates started showing patch-like damaged areas attributable to interaction of silicon nitride with the underlying substrate. Nevertheless ND particles were preserved in undamaged areas, with surface densities exceeding 1010 cm−2. These nanoparticles acted as sp3-carbon seeds in a subsequent 15 min Chemical Vapour Deposition run that allowed growing a 60–80 nm diamond film. Our previous study on Si(100) showed that detonation ND particles reacted with silicon between 800 and 900 °C and, as a consequence, no diamond film could be grown after Chemical Vapour Deposition (CVD). These findings demonstrated that the use of a thin silicon nitride buffer layer is preferable insofar as the growth of thin diamond films on silicon devices via nanoseeding is concerned.
2010
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore CHIM/03 - CHIMICA GENERALE E INORGANICA
Settore FIS/03 - FISICA DELLA MATERIA
Settore ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI
English
Con Impact Factor ISI
nanodiamond; thermal stability; annealing; XPS; SEM; photoelectron spectroscopy; electron microscopy
Zeppilli, S., Arnault, J., Gesset, G., Bergonzo, P., Polini, R. (2010). Thermal stability and surface modifications of detonation diamond nanoparticles studied with X-ray photoelectron spectroscopy. DIAMOND AND RELATED MATERIALS, 19(7-9), 846-853 [10.1016/j.diamond.2010.02.005].
Zeppilli, S; Arnault, J; Gesset, G; Bergonzo, P; Polini, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
DRM_2010_19_846.pdf

solo utenti autorizzati

Descrizione: Main article
Licenza: Copyright dell'editore
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/18106
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact