In this article we develop an analogue of Aubry-Mather theory for a class of dissipative systems, namely conformally symplectic systems, and prove the existence of interesting invariant sets, which, in analogy to the conservative case, will be called the Aubry and the Mather sets. Besides describ- ing their structure and their dynamical significance, we shall analyze their attracting/repelling properties, as well as their noteworthy role in driving the asymptotic dynamics of the system.

Marò, S., & Sorrentino, A. (2017). Aubry-Mather theory for conformally symplectic systems. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 354(2), 775-808 [10.1007/s00220-017-2900-3].

Aubry-Mather theory for conformally symplectic systems

SORRENTINO, ALFONSO
2017

Abstract

In this article we develop an analogue of Aubry-Mather theory for a class of dissipative systems, namely conformally symplectic systems, and prove the existence of interesting invariant sets, which, in analogy to the conservative case, will be called the Aubry and the Mather sets. Besides describ- ing their structure and their dynamical significance, we shall analyze their attracting/repelling properties, as well as their noteworthy role in driving the asymptotic dynamics of the system.
Pubblicato
Rilevanza internazionale
Articolo
Esperti non anonimi
Settore MAT/05 - Analisi Matematica
Settore MAT/03 - Geometria
Settore MAT/07 - Fisica Matematica
English
Marò, S., & Sorrentino, A. (2017). Aubry-Mather theory for conformally symplectic systems. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 354(2), 775-808 [10.1007/s00220-017-2900-3].
Marò, S; Sorrentino, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
MaroSorrCMP17.pdf

accesso solo dalla rete interna

Licenza: Copyright dell'editore
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/179336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact