Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses is an element of[1, 3] M-circle dot and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass is an element of[2, 99] M-circle dot, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 +/- 0.13 M-circle dot at a volume-weighted average distance of similar to 70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M-circle dot and black hole masses of at least 5 M-circle dot, a volume-weighted average distance of at least similar to 110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc(-3) yr(-1) for binary-neutron star systems and less than 3600 Gpc(-3) yr(-1) for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of 10(-7)(+20) Gpc(-3) yr(-1), short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than. 2.degrees 3(-1.1)(+1.7)(4.degrees 3(-1.9)(+3.1)).
Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, E., Ackley, K., et al. (2016). UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. THE ASTROPHYSICAL JOURNAL LETTERS, 832(2) [10.3847/2041-8205/832/2/L21].
UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN
We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses is an element of[1, 3] M-circle dot and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass is an element of[2, 99] M-circle dot, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 +/- 0.13 M-circle dot at a volume-weighted average distance of similar to 70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M-circle dot and black hole masses of at least 5 M-circle dot, a volume-weighted average distance of at least similar to 110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc(-3) yr(-1) for binary-neutron star systems and less than 3600 Gpc(-3) yr(-1) for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of 10(-7)(+20) Gpc(-3) yr(-1), short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than. 2.degrees 3(-1.1)(+1.7)(4.degrees 3(-1.9)(+3.1)).
Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, E., Ackley, K., et al. (2016). UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. THE ASTROPHYSICAL JOURNAL LETTERS, 832(2) [10.3847/2041-8205/832/2/L21].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/176672
Citazioni
ND
154
293
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.