We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., et al. (2016). First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. PHYSICAL REVIEW D, 94(10) [10.1103/PhysRevD.94.102001].

First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

Aiello, L;FAFONE, VIVIANA;Lorenzini, M;
2016-01-01

Abstract

We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/01 - FISICA SPERIMENTALE
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., et al. (2016). First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. PHYSICAL REVIEW D, 94(10) [10.1103/PhysRevD.94.102001].
Abbott, B; Abbott, R; Abbott, T; Abernathy, M; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R; Adya, V; Affeldt, C; Agathos, M; A...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/176645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 62
social impact