Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10(-23) / root Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., et al. (2016). GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. PHYSICAL REVIEW LETTERS, 116(13) [10.1103/PhysRevLett.116.131103].

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

FAFONE, VIVIANA;Lorenzini, M;
2016-01-01

Abstract

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10(-23) / root Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/01 - FISICA SPERIMENTALE
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Abbott, B., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., et al. (2016). GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. PHYSICAL REVIEW LETTERS, 116(13) [10.1103/PhysRevLett.116.131103].
Abbott, B; Abbott, R; Abbott, T; Abernathy, M; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R; Adya, V; Affeldt, C; Agathos, M; A...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/176627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 560
  • ???jsp.display-item.citation.isi??? 1139
social impact