Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.

Valle, C., Carri', M.t. (2017). Cysteine modifications in the pathogenesis of ALS. FRONTIERS IN MOLECULAR NEUROSCIENCE, 10, 5 [10.3389/fnmol.2017.00005].

Cysteine modifications in the pathogenesis of ALS

CARRI', MARIA TERESA
2017-01-01

Abstract

Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
TDP43; amyotrophic lateral sclerosis; cysteine; neurodegeneration; protein aggregation; superoxide dismutase 1
Valle, C., Carri', M.t. (2017). Cysteine modifications in the pathogenesis of ALS. FRONTIERS IN MOLECULAR NEUROSCIENCE, 10, 5 [10.3389/fnmol.2017.00005].
Valle, C; Carri', Mt
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Fr_Mol_Neurosci2017.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/174163
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact