We consider the quasilinear degenerate elliptic equation lambda u - Delta(p)u + H(x, Du) = 0 in Omega where (p) is the p-Laplace operator, p>2, 0 and is a smooth open bounded subset of (N) (N2). Under suitable structure conditions on the function H, we prove local and global gradient bounds for the solutions. We apply these estimates to study the solvability of the Dirichlet problem, and the existence, uniqueness and asymptotic behavior of maximal solutions blowing up at the boundary. The ergodic limit for those maximal solutions is also studied and the existence and uniqueness of a so-called additive eigenvalue is proved in this context.

Leonori, T., Porretta, A. (2016). Large solutions and gradient bounds for quasilinear elliptic equations. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 41(6), 952-998 [10.1080/03605302.2016.1169286].

Large solutions and gradient bounds for quasilinear elliptic equations

PORRETTA, ALESSIO
2016

Abstract

We consider the quasilinear degenerate elliptic equation lambda u - Delta(p)u + H(x, Du) = 0 in Omega where (p) is the p-Laplace operator, p>2, 0 and is a smooth open bounded subset of (N) (N2). Under suitable structure conditions on the function H, we prove local and global gradient bounds for the solutions. We apply these estimates to study the solvability of the Dirichlet problem, and the existence, uniqueness and asymptotic behavior of maximal solutions blowing up at the boundary. The ergodic limit for those maximal solutions is also studied and the existence and uniqueness of a so-called additive eigenvalue is proved in this context.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Leonori, T., Porretta, A. (2016). Large solutions and gradient bounds for quasilinear elliptic equations. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 41(6), 952-998 [10.1080/03605302.2016.1169286].
Leonori, T; Porretta, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
LeonoriPorretta_CPDE.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 717.69 kB
Formato Adobe PDF
717.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/172893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact