We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here allows us to deal with arbitrary type of degeneracy of the elliptic operators. We further discuss the relations between this notion and other natural generalizations of the classical notion of principal eigenvalue, some of which have been previously introduced for particular classes of operators.

Berestycki, H., Capuzzo Dolcetta, I., Porretta, A., Rossi, L. (2015). Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 103(5), 1276-1293 [10.1016/j.matpur.2014.10.012].

Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators

PORRETTA, ALESSIO;
2015-01-01

Abstract

We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here allows us to deal with arbitrary type of degeneracy of the elliptic operators. We further discuss the relations between this notion and other natural generalizations of the classical notion of principal eigenvalue, some of which have been previously introduced for particular classes of operators.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Berestycki, H., Capuzzo Dolcetta, I., Porretta, A., Rossi, L. (2015). Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 103(5), 1276-1293 [10.1016/j.matpur.2014.10.012].
Berestycki, H; Capuzzo Dolcetta, I; Porretta, A; Rossi, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BerCapRosPor.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 8.25 MB
Formato Adobe PDF
8.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/172885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 23
social impact