In this paper we study the Brill Noether locus of rank 2, (semi)stable vector bundles with at least two sections and of suitable degrees on a general ν-gonal curve. We classify its irreducible components having at least expected dimension. We moreover describe the general member F of such components just in terms of extensions of line bundles with suitable "minimality properties", providing information on the birational geometry of such components as well as on the very-ampleness of F.

Choi, Y., Flamini, F., Kim, S. (2018). Brill-Noether loci of rank-two vector bundles on a general n-gonal curve. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(8), 3233-3248 [10.1090/proc/14093].

Brill-Noether loci of rank-two vector bundles on a general n-gonal curve

FLAMINI, FLAMINIO
;
2018-08-01

Abstract

In this paper we study the Brill Noether locus of rank 2, (semi)stable vector bundles with at least two sections and of suitable degrees on a general ν-gonal curve. We classify its irreducible components having at least expected dimension. We moreover describe the general member F of such components just in terms of extensions of line bundles with suitable "minimality properties", providing information on the birational geometry of such components as well as on the very-ampleness of F.
1-ago-2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
stable vector bundles, Brill-Noether theory, general ν-gonal curve
https://www.ams.org/journals/proc/2018-146-08/S0002-9939-2018-14093-9/
Choi, Y., Flamini, F., Kim, S. (2018). Brill-Noether loci of rank-two vector bundles on a general n-gonal curve. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(8), 3233-3248 [10.1090/proc/14093].
Choi, Y; Flamini, F; Kim, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
proc14093.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 272.41 kB
Formato Adobe PDF
272.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/171743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact