We prove that the arithmetic Hecke operators are completely positive maps with respect to the Berezin's quantization deformation product of functions on H/Gamma. We then show that the associated subfactor defined by the Connes's correspondence associated to the completely positive map has integer index and graph A(infinity). The same construction for PSL(3, Z) gives a finite index subfactor of L(PSL(3, Z)) of infinite depth.

Radulescu, F. (1996). Arithmetic Hecke operators as completely positive maps. COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE, 322(6), 541-546.

Arithmetic Hecke operators as completely positive maps

RADULESCU, FLORIN
1996

Abstract

We prove that the arithmetic Hecke operators are completely positive maps with respect to the Berezin's quantization deformation product of functions on H/Gamma. We then show that the associated subfactor defined by the Connes's correspondence associated to the completely positive map has integer index and graph A(infinity). The same construction for PSL(3, Z) gives a finite index subfactor of L(PSL(3, Z)) of infinite depth.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Hecke operators, subfactors, completely positive maps
Radulescu, F. (1996). Arithmetic Hecke operators as completely positive maps. COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE, 322(6), 541-546.
Radulescu, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Hecke.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 160.18 kB
Formato Adobe PDF
160.18 kB Adobe PDF Visualizza/Apri
heckepape322Comptes_rendus_de_l'Académie_des_[...]Académie_des_bpt6k9922141.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/171396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact