The classic Birkhoff–von Neumann theorem states that the set of doubly stochastic matrices is the convex hull of the permutation matrices. In this paper, we study a generalisation of this theorem in the type II1setting. Namely, we replace a doubly stochastic matrix with a collection of measure preserving partial isomorphisms, of the unit interval, with similar properties. We show that a weaker version of this theorem still hold

Paunescu, L., & Radulescu, F. (2017). A generalisation to Birkhoff–von Neumann theorem. ADVANCES IN MATHEMATICS, 308, 836-858 [10.1016/j.aim.2016.12.031].

A generalisation to Birkhoff–von Neumann theorem

RADULESCU, FLORIN
2017

Abstract

The classic Birkhoff–von Neumann theorem states that the set of doubly stochastic matrices is the convex hull of the permutation matrices. In this paper, we study a generalisation of this theorem in the type II1setting. Namely, we replace a doubly stochastic matrix with a collection of measure preserving partial isomorphisms, of the unit interval, with similar properties. We show that a weaker version of this theorem still hold
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Paunescu, L., & Radulescu, F. (2017). A generalisation to Birkhoff–von Neumann theorem. ADVANCES IN MATHEMATICS, 308, 836-858 [10.1016/j.aim.2016.12.031].
Paunescu, L; Radulescu, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870815303327-paunescu_radulescu.pdf

accesso solo dalla rete interna

Licenza: Copyright dell'editore
Dimensione 471 kB
Formato Adobe PDF
471 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/171168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact