We study quantitative compactness estimates in W1,1 for the map St , t > 0 loc that is associated with the given initial data u0 ∈ Lip(RN ) for the corresponding solution St u0 of a Hamilton–Jacobi equation u t + H ∇x u = 0 , t 0 , x ∈ R N , with a uniformly convex Hamiltonian H = H(p). We provide upper and lower estimates of order 1/εN on the Kolmogorov ε-entropy in W1,1 of the image through the map St of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of “resolution” of a numerical method implemented for this equation.

Ancona, F., Cannarsa, P., Nguyen, K. (2016). Quantitative Compactness Estimates for Hamilton–Jacobi Equations. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), 793-828 [10.1007/s00205-015-0907-5].

Quantitative Compactness Estimates for Hamilton–Jacobi Equations

CANNARSA, PIERMARCO;
2016-01-01

Abstract

We study quantitative compactness estimates in W1,1 for the map St , t > 0 loc that is associated with the given initial data u0 ∈ Lip(RN ) for the corresponding solution St u0 of a Hamilton–Jacobi equation u t + H ∇x u = 0 , t 0 , x ∈ R N , with a uniformly convex Hamiltonian H = H(p). We provide upper and lower estimates of order 1/εN on the Kolmogorov ε-entropy in W1,1 of the image through the map St of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of “resolution” of a numerical method implemented for this equation.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Kolmogorov entropy, Hamilton-Jacobi equations, viscosity solutions
Ancona, F., Cannarsa, P., Nguyen, K. (2016). Quantitative Compactness Estimates for Hamilton–Jacobi Equations. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), 793-828 [10.1007/s00205-015-0907-5].
Ancona, F; Cannarsa, P; Nguyen, K
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Anc-PMC-KTN_ARMA.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 907.03 kB
Formato Adobe PDF
907.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/170475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact