It is well known that ionizing radiations induce a marked downregulation of antigen-dependent and natural immunity for a prolonged period of time. This is due, at least in part, to radiation-induced apoptosis of different lymphocyte subpopulations, including natural killer (NK) cells. Aim of this study was to investigate the capability of Beta Interferon (β-IFN) and Interleukin-2 (IL2), alone or in combination, to restore the functional activity of the natural immune system. Mononuclear cells (MNCs) obtained from intact or in vitro irradiated human peripheral blood were treated in vitro with β-IFN immediately before or at the end of the 4-day treatment with IL2. Time-course analysis was performed on the NK activity, the total number and the apoptotic fraction of CD16+ and CD56+ cells, the 2 main NK effector cell subpopulations. The results indicate that radiation-induced impairment of natural cytotoxicity of MNC could be successfully antagonized by the β-IFN+IL2 combination, mainly when exposure to β-IFN preceded IL2 treatment. This radioprotective effect is paralleled by lower levels of radiation-induced apoptosis and increased expression of the antiapoptotic Bcl-2 protein. Since natural immunity can play a significant role in antitumor host's resistance, these results could provide the rational basis for a cytokine-based pharmacological strategy able to restore immune responsiveness and to afford possible therapeutic benefits in cancer patients undergoing radiotherapy.

Franzese, O., Tricarico, M., Starace, G., Pepponi, R., Bonmassar, L., Cottarelli, A., et al. (2013). Interferon-beta combined with interleukin-2 restores human natural cytotoxicity impaired in vitro by ionizing radiations. JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 33(6), 308-318 [10.1089/jir.2012.0025].

Interferon-beta combined with interleukin-2 restores human natural cytotoxicity impaired in vitro by ionizing radiations

FRANZESE, ORNELLA;
2013-01-01

Abstract

It is well known that ionizing radiations induce a marked downregulation of antigen-dependent and natural immunity for a prolonged period of time. This is due, at least in part, to radiation-induced apoptosis of different lymphocyte subpopulations, including natural killer (NK) cells. Aim of this study was to investigate the capability of Beta Interferon (β-IFN) and Interleukin-2 (IL2), alone or in combination, to restore the functional activity of the natural immune system. Mononuclear cells (MNCs) obtained from intact or in vitro irradiated human peripheral blood were treated in vitro with β-IFN immediately before or at the end of the 4-day treatment with IL2. Time-course analysis was performed on the NK activity, the total number and the apoptotic fraction of CD16+ and CD56+ cells, the 2 main NK effector cell subpopulations. The results indicate that radiation-induced impairment of natural cytotoxicity of MNC could be successfully antagonized by the β-IFN+IL2 combination, mainly when exposure to β-IFN preceded IL2 treatment. This radioprotective effect is paralleled by lower levels of radiation-induced apoptosis and increased expression of the antiapoptotic Bcl-2 protein. Since natural immunity can play a significant role in antitumor host's resistance, these results could provide the rational basis for a cytokine-based pharmacological strategy able to restore immune responsiveness and to afford possible therapeutic benefits in cancer patients undergoing radiotherapy.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/14 - FARMACOLOGIA
English
Con Impact Factor ISI
Antigens, CD56; Apoptosis; Cell Line, Tumor; Cytotoxicity, Immunologic; GPI-Linked Proteins; Gamma Rays; Humans; Immunity, Innate; Interferon-beta; Interleukin-2; K562 Cells; Killer Cells, Natural; Leukocytes, Mononuclear; Lymphocyte Subsets; Proto-Oncogene Proteins c-bcl-2; Receptors, IgG
Franzese, O., Tricarico, M., Starace, G., Pepponi, R., Bonmassar, L., Cottarelli, A., et al. (2013). Interferon-beta combined with interleukin-2 restores human natural cytotoxicity impaired in vitro by ionizing radiations. JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 33(6), 308-318 [10.1089/jir.2012.0025].
Franzese, O; Tricarico, M; Starace, G; Pepponi, R; Bonmassar, L; Cottarelli, A; Fuggetta, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Franzese J IFN Cytok Res 2013.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 323.42 kB
Formato Adobe PDF
323.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/168234
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact