Several new $ 1$D results for solutions of possibly singular or degenerate elliptic equations, inspired by a conjecture of De Giorgi, are provided. In particular, $ 1$D symmetry is proven under the assumption that either the profiles at infinity are $ 2$D, or that one level set is a complete graph, or that the solution is minimal or, more generally, $ Q$-minimal.

Farina, A., Valdinoci, E. (2011). 1D symmetry for solutions of semilinear and quasilinear elliptic equations. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 363(2), 579-609 [10.1090/S0002-9947-2010-05021-4].

1D symmetry for solutions of semilinear and quasilinear elliptic equations

VALDINOCI, ENRICO
2011-01-01

Abstract

Several new $ 1$D results for solutions of possibly singular or degenerate elliptic equations, inspired by a conjecture of De Giorgi, are provided. In particular, $ 1$D symmetry is proven under the assumption that either the profiles at infinity are $ 2$D, or that one level set is a complete graph, or that the solution is minimal or, more generally, $ Q$-minimal.
2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Farina, A., Valdinoci, E. (2011). 1D symmetry for solutions of semilinear and quasilinear elliptic equations. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 363(2), 579-609 [10.1090/S0002-9947-2010-05021-4].
Farina, A; Valdinoci, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/16735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact