Metropolis Monte Carlo simulations are used to construct minimal energy configurations by electrostatic coupling of rotating dipoles associated with each unit cell of a perovskite CH3NH3PbI3 crystal. Short-range antiferroelectric order is found, whereas at scales of 8-10 nm, we observe the formation of nanodomains, strongly influencing the electrostatics of the device. The models are coupled to drift-diffusion simulations to study the actual role of nanodomains in the I-V characteristics, especially focusing on charge separation and recombination losses. We demonstrate that holes and electrons separate into different nanodomains following different current pathways. From our analysis we can conclude that even antiferroelectric ordering can ultimately lead to an increase of photoconversion efficiencies thanks to a decrease of trap-assisted recombination losses and the formation of good current percolation patterns along domain edges.

Pecchia, A., Gentilini, D., Rossi, D., AUF DER MAUR, M., DI CARLO, A. (2016). Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. NANO LETTERS, 16(2), 988-992 [10.1021/acs.nanolett.5b03957].

Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells

GENTILINI, DESIREE;ROSSI, DANIELE;AUF DER MAUR, MATTHIAS;DI CARLO, ALDO
2016-01-01

Abstract

Metropolis Monte Carlo simulations are used to construct minimal energy configurations by electrostatic coupling of rotating dipoles associated with each unit cell of a perovskite CH3NH3PbI3 crystal. Short-range antiferroelectric order is found, whereas at scales of 8-10 nm, we observe the formation of nanodomains, strongly influencing the electrostatics of the device. The models are coupled to drift-diffusion simulations to study the actual role of nanodomains in the I-V characteristics, especially focusing on charge separation and recombination losses. We demonstrate that holes and electrons separate into different nanodomains following different current pathways. From our analysis we can conclude that even antiferroelectric ordering can ultimately lead to an increase of photoconversion efficiencies thanks to a decrease of trap-assisted recombination losses and the formation of good current percolation patterns along domain edges.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Solar cells; ferroelectric domains; halides; perovskite
Pecchia, A., Gentilini, D., Rossi, D., AUF DER MAUR, M., DI CARLO, A. (2016). Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. NANO LETTERS, 16(2), 988-992 [10.1021/acs.nanolett.5b03957].
Pecchia, A; Gentilini, D; Rossi, D; AUF DER MAUR, M; DI CARLO, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2015_Nanoletter_Perovskite.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 6.86 MB
Formato Adobe PDF
6.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/167037
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 68
social impact