OBJECTIVE: As a better understanding of the molecular basis of carcinogenesis has emerged, oncogene-specific cell-signaling pathways have been successfully targeted to treat human malignances. Despite impressive advances in oncogene-directed therapeutics, genetic instability in cancer cells often manifest acquired resistance. This is particularly noted in the use of tyrosine kinase inhibitors therapies and not more evident than for chronic myeloid leukemia. Therefore, it is of great importance to understand the molecular mechanisms affecting cancer cell sensitivity and resistance to tyrosine kinase inhibitors. MATERIALS AND METHODS: In this study, we used continuous exposure to stepwise increasing concentrations of imatinib (0.6-1 μM) to select imatinib-resistant K562 cells. RESULTS: Expression of BCR-ABL increased both at RNA and protein levels in imatinib-resistant cell lines. Furthermore, expression levels of sphingosine kinase 1 (SphK1) were increased significantly in resistant cells, channeling sphingoid bases to the SphK1 pathway and activating sphingosine-1-phosphate-dependent tyrosine phosphorylation pathways that include the adaptor protein Crk. The partial inhibition of SphK1 activity by N,N-dimethylsphingosine or expression by small interfering RNA increased sensitivity to imatinib-induced apoptosis in resistant cells and returned BCR-ABL to baseline levels. To determine the resistance mechanism-induced SphK1 upregulation, we used pharmacological inhibitors of the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathway and observed robust downmodulation of SphK1 expression and activity when AKT2, but not AKT1 or AKT3, was suppressed. CONCLUSIONS: These results demonstrate that SphK1 is upregulated in imatinib-resistant K562 cells by a pathway contingent on a phosphoinositide 3-kinase/AKT2/mammalian target of rapamycin signaling pathway. We propose that SphK1 plays an important role in development of acquired resistance to imatinib in chronic myeloid leukemia cell lines

Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. EXPERIMENTAL HEMATOLOGY, Jun;39(6), 653-665 [10.1016/j.exphem.2011.02.013].

Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells.

GAMBACURTA, ALESSANDRA;SINIBALDI SALIMEI, PAOLA;
2011-01-01

Abstract

OBJECTIVE: As a better understanding of the molecular basis of carcinogenesis has emerged, oncogene-specific cell-signaling pathways have been successfully targeted to treat human malignances. Despite impressive advances in oncogene-directed therapeutics, genetic instability in cancer cells often manifest acquired resistance. This is particularly noted in the use of tyrosine kinase inhibitors therapies and not more evident than for chronic myeloid leukemia. Therefore, it is of great importance to understand the molecular mechanisms affecting cancer cell sensitivity and resistance to tyrosine kinase inhibitors. MATERIALS AND METHODS: In this study, we used continuous exposure to stepwise increasing concentrations of imatinib (0.6-1 μM) to select imatinib-resistant K562 cells. RESULTS: Expression of BCR-ABL increased both at RNA and protein levels in imatinib-resistant cell lines. Furthermore, expression levels of sphingosine kinase 1 (SphK1) were increased significantly in resistant cells, channeling sphingoid bases to the SphK1 pathway and activating sphingosine-1-phosphate-dependent tyrosine phosphorylation pathways that include the adaptor protein Crk. The partial inhibition of SphK1 activity by N,N-dimethylsphingosine or expression by small interfering RNA increased sensitivity to imatinib-induced apoptosis in resistant cells and returned BCR-ABL to baseline levels. To determine the resistance mechanism-induced SphK1 upregulation, we used pharmacological inhibitors of the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathway and observed robust downmodulation of SphK1 expression and activity when AKT2, but not AKT1 or AKT3, was suppressed. CONCLUSIONS: These results demonstrate that SphK1 is upregulated in imatinib-resistant K562 cells by a pathway contingent on a phosphoinositide 3-kinase/AKT2/mammalian target of rapamycin signaling pathway. We propose that SphK1 plays an important role in development of acquired resistance to imatinib in chronic myeloid leukemia cell lines
2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/05 - PATOLOGIA CLINICA
English
Con Impact Factor ISI
Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. EXPERIMENTAL HEMATOLOGY, Jun;39(6), 653-665 [10.1016/j.exphem.2011.02.013].
Marfe, G; Di Stefano, C; Gambacurta, A; Ottone, T; Martini, V; Abruzzese, E; Mologni, L; SINIBALDI SALIMEI, P; de Fabritis, P; Gambacorti Passerini, C...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/16348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 32
social impact