The reaction of the Cu,Co derivative of bovine Cu,Zn superoxide dismutase with phenylglyoxal or butanedione, which are known to inactivate the enzyme by selectively binding to Arg 141, has been studied by 1H NMR. Several 1H NMR lines of the copper-liganding histidine residues were perturbed, reproducing an effect so far observed only in the case of binding of anions to this protein. The room temperature EPR spectrum of the modified Cu,Zn protein was altered very slightly, indicating that the geometry of the copper site was not grossly affected by the modification. NMR and EPR changes were reversed by dialysis in the case of the reversible butanedione adduct. These data show that the coordination of the copper in Cu,Zn superoxide dismutase can be destabilized by modifications occurring at a neighboring but not a metal-liganding residue. It is suggested that part of the NMR effects seen on copper ligands in the case of anion binding are produced by interaction of anions with Arg 141, rather than by direct ligand replacement.
Paci, M., Desideri, A., Sette, M., Rotilio, G. (1991). NMR evidence for perturbation of the copper coordination sphere upon chemical modification of arginine 141 in bovine Cu,Zn superoxide dismutase. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 286(1), 222-225 [10.1016/0003-9861(91)90032-E].
NMR evidence for perturbation of the copper coordination sphere upon chemical modification of arginine 141 in bovine Cu,Zn superoxide dismutase
PACI, MAURIZIO;DESIDERI, ALESSANDRO;SETTE, MARCO;ROTILIO, GIUSEPPE
1991-04-01
Abstract
The reaction of the Cu,Co derivative of bovine Cu,Zn superoxide dismutase with phenylglyoxal or butanedione, which are known to inactivate the enzyme by selectively binding to Arg 141, has been studied by 1H NMR. Several 1H NMR lines of the copper-liganding histidine residues were perturbed, reproducing an effect so far observed only in the case of binding of anions to this protein. The room temperature EPR spectrum of the modified Cu,Zn protein was altered very slightly, indicating that the geometry of the copper site was not grossly affected by the modification. NMR and EPR changes were reversed by dialysis in the case of the reversible butanedione adduct. These data show that the coordination of the copper in Cu,Zn superoxide dismutase can be destabilized by modifications occurring at a neighboring but not a metal-liganding residue. It is suggested that part of the NMR effects seen on copper ligands in the case of anion binding are produced by interaction of anions with Arg 141, rather than by direct ligand replacement.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.