The preparation of nanostructured organic-inorganic materials by assembling of nanobuilding blocks allows controlling the extent of phase interaction, which in its turn governs structure-properties relationships. We present here the synthesis of siloxane-based nanobuilding blocks prepared by reacting diphenylsilanediol with vinyltriethoxysilane and triethoxysilane. The reaction products were obtained by non-hydrolytic condensation between silanediol and ethoxide groups in inert atmosphere, in the presence of pyridine, triethylamine or butyl lithium. Different synthetic conditions were examined by means of ATR-FTIR and NMR spectroscopies, showing the formation of siloxane bonds. In the case of triethoxysilane the reaction carried out in the presence of pyridine leads to Si-H bond preservation in the final product. Air stable products with improved Si-O-Si hydrolytic stability can be obtained by removal of the base after the reaction completion. The condensation products can be described as a mixture of siloxane rings involving difunctional and trifunctional silicon units. © 2004 Kluwer Academic Publishers.
Dirè, S., Egger, P., DI VONA, M.l., Trombetta, M., Licoccia, S. (2004). Siloxane-based nanobuilding blocks by reaction between silanediol and trifunctional silicon alkoxides. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 32(1-3), 57-61 [10.1007/s10971-004-5765-9].
Siloxane-based nanobuilding blocks by reaction between silanediol and trifunctional silicon alkoxides
DI VONA, MARIA LUISA;LICOCCIA, SILVIA
2004-01-01
Abstract
The preparation of nanostructured organic-inorganic materials by assembling of nanobuilding blocks allows controlling the extent of phase interaction, which in its turn governs structure-properties relationships. We present here the synthesis of siloxane-based nanobuilding blocks prepared by reacting diphenylsilanediol with vinyltriethoxysilane and triethoxysilane. The reaction products were obtained by non-hydrolytic condensation between silanediol and ethoxide groups in inert atmosphere, in the presence of pyridine, triethylamine or butyl lithium. Different synthetic conditions were examined by means of ATR-FTIR and NMR spectroscopies, showing the formation of siloxane bonds. In the case of triethoxysilane the reaction carried out in the presence of pyridine leads to Si-H bond preservation in the final product. Air stable products with improved Si-O-Si hydrolytic stability can be obtained by removal of the base after the reaction completion. The condensation products can be described as a mixture of siloxane rings involving difunctional and trifunctional silicon units. © 2004 Kluwer Academic Publishers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.