Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important cause of acute food- borne zoonoses worldwide, typically carried by pigs. It is well known that Salmonella has evolved a wide array of strategies enabling it to invade the host, but little information is available on the specific host responses to Salmonella infections. In the present study, we used an in vivo approach (involving piglets infected with a virulent or an attenuated S. Typhimurium strain) coupled to histological and proteomic analysis of the cecum mucosa, to highlight the host pathways activated during S. Typhimurium infection. We confirm the complex host-pathogen interaction. Our data showed that the metabolic and the cytoskeleton organization functions were the most significantly altered. In particular, the modifications of energy metabolic pathway could suggest a "nutriprive" mechanism, in which the host reduce its metabolic and energetic status to limit Salmonella infection. This study could represent a preliminary approach, providing information useful to better understand the host-Salmonella interaction.
Miarelli, M., Drumo, R., Signorelli, F., Marchitelli, C., Pavone, S., Pesciaroli, M., et al. (2016). Salmonella Typhimurium infection primes a nutriprive mechanism in piglets. VETERINARY MICROBIOLOGY, 186, 117-125 [10.1016/j.vetmic.2016.02.006].
Salmonella Typhimurium infection primes a nutriprive mechanism in piglets
Ammendola S;Battistoni A;
2016-01-01
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important cause of acute food- borne zoonoses worldwide, typically carried by pigs. It is well known that Salmonella has evolved a wide array of strategies enabling it to invade the host, but little information is available on the specific host responses to Salmonella infections. In the present study, we used an in vivo approach (involving piglets infected with a virulent or an attenuated S. Typhimurium strain) coupled to histological and proteomic analysis of the cecum mucosa, to highlight the host pathways activated during S. Typhimurium infection. We confirm the complex host-pathogen interaction. Our data showed that the metabolic and the cytoskeleton organization functions were the most significantly altered. In particular, the modifications of energy metabolic pathway could suggest a "nutriprive" mechanism, in which the host reduce its metabolic and energetic status to limit Salmonella infection. This study could represent a preliminary approach, providing information useful to better understand the host-Salmonella interaction.File | Dimensione | Formato | |
---|---|---|---|
Miarelli et al.pdf
solo utenti autorizzati
Descrizione: articolo prncipale
Licenza:
Non specificato
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.