TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies.

Bozzo, F., Salvatori, I., Iacovelli, F., Mirra, A., Rossi, S., Cozzolino, M., et al. (2016). Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells. NEUROBIOLOGY OF DISEASE, 94, 63-72 [10.1016/j.nbd.2016.06.006].

Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells

Iacovelli, F;FALCONI, MATTIA;CARRI', MARIA TERESA
2016-01-01

Abstract

TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
Settore BIO/11 - BIOLOGIA MOLECOLARE
English
Con Impact Factor ISI
ALS; Amyotrophic lateral sclerosis; Cysteine; Large aggregates; N-terminal domain; Neurodegeneration; Oligomers; Protein aggregation; TDP-43
Bozzo, F., Salvatori, I., Iacovelli, F., Mirra, A., Rossi, S., Cozzolino, M., et al. (2016). Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells. NEUROBIOLOGY OF DISEASE, 94, 63-72 [10.1016/j.nbd.2016.06.006].
Bozzo, F; Salvatori, I; Iacovelli, F; Mirra, A; Rossi, S; Cozzolino, M; Falconi, M; Valle, C; Carri', Mt
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
pagination_YNBDI_3777.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/150347
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact