The activity of the adenylate cyclase located in membranes prepared from hippocampus of adult rat can be stimulated by serotonin (5-HT) (Ka = 4 X 10(-7) M). The maximal effect is obtained with 10 microM 5-HT. Freezing of the tissue decreases the 5-HT stimulation; this stimulation is optimal in the presence of 82.5 mM Tris-maleate buffer (pH 7.4) and 50 microM GTP. The adenylate cyclase activity of membranes prepared from cortex, hypothalamus, and colliculi of adult rats is not significantly stimulated by 5-HT. Dopamine (DA) also stimulates adenylate cyclase located in hippocampal membranes; its effect can be blocked by haloperidol (10(-6) M), which fails to inhibit 5-HT stimulation. Moreover, p-chlorophenylalanine treatment for 2 weeks or selective lesion of 5-HT axons afferent to the hippocampus increases the Vmax of 5-HT stimulation, but fails to change that of DA stimulation. The 5-HT stimulation can be inhibited by metergoline, spiroperidol, and pizotyline (10(-6) M), but not by the same concentrations of mianserin, ketanserine, alprenolol, phenoxybenzamine, and mepyramine. The 5-HT stimulation of adenylate cyclase of hippocampal membranes can be mimicked by tryptamine, 5-methoxytryptamine, bufotenine, and to a lesser extent by LSD; N-methyltryptamine, N-methyltryptophan, and 5-hydroxytryptophan are inactive. Studies with kainic acid suggest that the 5-HT recognition site (5-HT1) linked to adenylate cyclase is located on the membrane of intrinsic hippocampal neurons.

Barbaccia, M.l., Brunello, N., Chuang, D., Costa, E. (1983). Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. JOURNAL OF NEUROCHEMISTRY, 40(6), 1671-1679.

Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat

BARBACCIA, MARIA LUISA;
1983-06-01

Abstract

The activity of the adenylate cyclase located in membranes prepared from hippocampus of adult rat can be stimulated by serotonin (5-HT) (Ka = 4 X 10(-7) M). The maximal effect is obtained with 10 microM 5-HT. Freezing of the tissue decreases the 5-HT stimulation; this stimulation is optimal in the presence of 82.5 mM Tris-maleate buffer (pH 7.4) and 50 microM GTP. The adenylate cyclase activity of membranes prepared from cortex, hypothalamus, and colliculi of adult rats is not significantly stimulated by 5-HT. Dopamine (DA) also stimulates adenylate cyclase located in hippocampal membranes; its effect can be blocked by haloperidol (10(-6) M), which fails to inhibit 5-HT stimulation. Moreover, p-chlorophenylalanine treatment for 2 weeks or selective lesion of 5-HT axons afferent to the hippocampus increases the Vmax of 5-HT stimulation, but fails to change that of DA stimulation. The 5-HT stimulation can be inhibited by metergoline, spiroperidol, and pizotyline (10(-6) M), but not by the same concentrations of mianserin, ketanserine, alprenolol, phenoxybenzamine, and mepyramine. The 5-HT stimulation of adenylate cyclase of hippocampal membranes can be mimicked by tryptamine, 5-methoxytryptamine, bufotenine, and to a lesser extent by LSD; N-methyltryptamine, N-methyltryptophan, and 5-hydroxytryptophan are inactive. Studies with kainic acid suggest that the 5-HT recognition site (5-HT1) linked to adenylate cyclase is located on the membrane of intrinsic hippocampal neurons.
giu-1983
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/14 - FARMACOLOGIA
English
Con Impact Factor ISI
Kinetics; Hippocampus; Male; Enzyme Activation; Haloperidol; Rats, Inbred Strains; Rats; Adenylate Cyclase; Animals; Serotonin; Dopamine; Cell Membrane
Barbaccia, M.l., Brunello, N., Chuang, D., Costa, E. (1983). Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. JOURNAL OF NEUROCHEMISTRY, 40(6), 1671-1679.
Barbaccia, Ml; Brunello, N; Chuang, D; Costa, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/15008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact