The development of head and neck squamous cell carcinomas (HNSCCs) is a multistep process progressing from precancerous lesions to highly malignant tumors. A critical role in HNSCCs development and progression is played by EGFR family members including EGFR and ErbB2. The aim of this study was to investigate the effect of apigenin, a low molecular weight flavonoid contained in fruits and vegetables, on growth and survival and on EGFR/ErbB2 signaling in cell lines derived from HNSCCs of the tongue (CAL-27, SCC-15) or pharynx (FaDu). Using sulforhodamine B assay, FACS analysis and activated caspase-3 detection by immunofluorescence, we here demonstrate that apigenin dose-dependently inhibits survival and induces apoptosis of HNSCC cells. Further, by performing western blotting with antibodies specific for phosphorylated EGFR, ErbB2, Erk1/2 and Akt we demonstrate that apigenin reduces ligand-induced phosphorylation of EGFR and ErbB2 and impairs their downstream signaling. On the whole, our results suggest that apigenin properties might be exploited for chemoprevention and/or therapy of head and neck carcinomas.
Masuelli, L., Marzocchella, L., Quaranta, A., Palumbo, C., Pompa, G., Izzi, V., et al. (2011). Apigenin induces apoptosis and impairs head and neck carcinomas EGFR/ErbB2 signaling. FRONTIERS IN BIOSCIENCE, 16(3), 1060-1068 [10.2741/3735].
Apigenin induces apoptosis and impairs head and neck carcinomas EGFR/ErbB2 signaling
PALUMBO, CAMILLA;CANINI, ANTONELLA;MODESTI, ANDREA;BEI, ROBERTO
2011-01-01
Abstract
The development of head and neck squamous cell carcinomas (HNSCCs) is a multistep process progressing from precancerous lesions to highly malignant tumors. A critical role in HNSCCs development and progression is played by EGFR family members including EGFR and ErbB2. The aim of this study was to investigate the effect of apigenin, a low molecular weight flavonoid contained in fruits and vegetables, on growth and survival and on EGFR/ErbB2 signaling in cell lines derived from HNSCCs of the tongue (CAL-27, SCC-15) or pharynx (FaDu). Using sulforhodamine B assay, FACS analysis and activated caspase-3 detection by immunofluorescence, we here demonstrate that apigenin dose-dependently inhibits survival and induces apoptosis of HNSCC cells. Further, by performing western blotting with antibodies specific for phosphorylated EGFR, ErbB2, Erk1/2 and Akt we demonstrate that apigenin reduces ligand-induced phosphorylation of EGFR and ErbB2 and impairs their downstream signaling. On the whole, our results suggest that apigenin properties might be exploited for chemoprevention and/or therapy of head and neck carcinomas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.