A class of families of Markov chains defined on the vertices of the n-dimensional hypercube, Ω n ={0,1} n , is studied. The single-step transition probabilities P n,ij , with i,j∈Ω n , are given by Pn,ij=\frac(1-a)dij(2-a)nPnij=(2−)n(1−)dij, where α∈(0,1) and d ij is the Hamming distance between i and j. This corresponds to flip independently each component of the vertex with probability \frac1-a2-a2−1−. The m-step transition matrix Pn,ijmPmnij is explicitly computed in a close form. The class is proved to exhibit cutoff. A model-independent result about the vanishing of the first m terms of the expansion in α of Pn,ijmPmnij is also proved.

Scoppola, B. (2011). Exact Solution for a Class of Random Walk on the Hypercube. JOURNAL OF STATISTICAL PHYSICS, 143(3), 413-419 [10.1007/s10955-011-0194-y].

Exact Solution for a Class of Random Walk on the Hypercube

SCOPPOLA, BENEDETTO
2011-01-01

Abstract

A class of families of Markov chains defined on the vertices of the n-dimensional hypercube, Ω n ={0,1} n , is studied. The single-step transition probabilities P n,ij , with i,j∈Ω n , are given by Pn,ij=\frac(1-a)dij(2-a)nPnij=(2−)n(1−)dij, where α∈(0,1) and d ij is the Hamming distance between i and j. This corresponds to flip independently each component of the vertex with probability \frac1-a2-a2−1−. The m-step transition matrix Pn,ijmPmnij is explicitly computed in a close form. The class is proved to exhibit cutoff. A model-independent result about the vanishing of the first m terms of the expansion in α of Pn,ijmPmnij is also proved.
2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Finite Markov chain ; Random walk on the hypercube ; Cutoff
Scoppola, B. (2011). Exact Solution for a Class of Random Walk on the Hypercube. JOURNAL OF STATISTICAL PHYSICS, 143(3), 413-419 [10.1007/s10955-011-0194-y].
Scoppola, B
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/14406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact