The aim of this paper is to study the asymptotic expansion in total variation in the central limit theorem when the law of the basic random variable is locally lower-bounded by the Lebesgue measure (or equivalently, has an absolutely continuous component): we develop the error in powers of n^{−1/2} and give an explicit formula for the approximating measure.

Bally, V., Caramellino, L. (2016). Asymptotic development for the CLT in total variation distance. BERNOULLI, 22(4), 2442-2485 [10.3150/15-BEJ734].

Asymptotic development for the CLT in total variation distance

CARAMELLINO, LUCIA
2016-01-01

Abstract

The aim of this paper is to study the asymptotic expansion in total variation in the central limit theorem when the law of the basic random variable is locally lower-bounded by the Lebesgue measure (or equivalently, has an absolutely continuous component): we develop the error in powers of n^{−1/2} and give an explicit formula for the approximating measure.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Abstract Malliavin calculus; integration by parts; regularizing functions; total variation distance.
Bally, V., Caramellino, L. (2016). Asymptotic development for the CLT in total variation distance. BERNOULLI, 22(4), 2442-2485 [10.3150/15-BEJ734].
Bally, V; Caramellino, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BEJ734.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 363.54 kB
Formato Adobe PDF
363.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/143027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact