One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the 'local binary patterns'). The proposed system is tested on two data sets, of 269 oocytes and 269 corresponding embryos from 104 women, and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they showed an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection.

Manna, C., Nanni, L., Lumini, A., Pappalardo, S. (2013). Artificial intelligence techniques for embryo and oocyte classification. REPRODUCTIVE BIOMEDICINE ONLINE, 26(1), 42-49 [10.1016/j.rbmo.2012.09.015].

Artificial intelligence techniques for embryo and oocyte classification

MANNA, CLAUDIO;
2013-01-01

Abstract

One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the 'local binary patterns'). The proposed system is tested on two data sets, of 269 oocytes and 269 corresponding embryos from 104 women, and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they showed an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/40 - GINECOLOGIA E OSTETRICIA
English
Con Impact Factor ISI
Manna, C., Nanni, L., Lumini, A., Pappalardo, S. (2013). Artificial intelligence techniques for embryo and oocyte classification. REPRODUCTIVE BIOMEDICINE ONLINE, 26(1), 42-49 [10.1016/j.rbmo.2012.09.015].
Manna, C; Nanni, L; Lumini, A; Pappalardo, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Manna Artificial intelligence techniques for embryo and oocyte.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 481.83 kB
Formato Adobe PDF
481.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/140904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 81
social impact