In this paper we give a description of the first order deformation space of a regular embedding X hooked right arrow Y of reduced algebraic schemes. We compare our result with results of Ran (in particular, Deformation of Maps, Algebraic Curves and Projective Geometry (Trento, 1988), 246-253, Lecture Notes in Math, vol. 1389. Springer, Berlin, 1989, Prop. 1.3).

In this paper we give a description of the first order deformation space of a regular embedding X -> Y of reduced algebraic schemes. We compare our result with the results of Ziv Ran.

Ciliberto, C., Flamini, F., Galati, C., & Knutsen, A. (2017). A note on deformations of regular embeddings. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 66(1), 53-63 [10.1007/s12215-016-0276-4].

A note on deformations of regular embeddings

CILIBERTO, CIRO;FLAMINI, FLAMINIO;
2017-04-01

Abstract

In this paper we give a description of the first order deformation space of a regular embedding X hooked right arrow Y of reduced algebraic schemes. We compare our result with results of Ran (in particular, Deformation of Maps, Algebraic Curves and Projective Geometry (Trento, 1988), 246-253, Lecture Notes in Math, vol. 1389. Springer, Berlin, 1989, Prop. 1.3).
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - Geometria
eng
Con Impact Factor ISI
In this paper we give a description of the first order deformation space of a regular embedding X -> Y of reduced algebraic schemes. We compare our result with the results of Ziv Ran.
Deformations of maps; Moduli maps; Regular embeddings; Severi Varieties;
Deformations, Algebraic schemes
https://link.springer.com/article/10.1007/s12215-016-0276-4
Ciliberto, C., Flamini, F., Galati, C., & Knutsen, A. (2017). A note on deformations of regular embeddings. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 66(1), 53-63 [10.1007/s12215-016-0276-4].
Ciliberto, C; Flamini, F; Galati, C; Knutsen, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
RendCircMatPal2016.pdf

non disponibili

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 785.37 kB
Formato Adobe PDF
785.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/140402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact