Using the approach of Bozzo, Di Fiore, and Zellini, new matrix displacement decomposition formulas are introduced. It is shown how an arbitrary square matrix A can be expressed as sums of products of Hessenberg algebra matrices and high level (block) matrices whose submatrices are Hessenberg algebra matrices and have variable sizes. In most cases these block factors are block-diagonal matrices. Then these formulas are used in sequential and parallel solution of Toeplitz systems.

DI FIORE, C., Zellini, P. (1998). Matrix displacement decompositions and apllications to Toeplitz linear systems. LINEAR ALGEBRA AND ITS APPLICATIONS, 268, 197-225 [10.1016/S0024-3795(97)00044-X].

Matrix displacement decompositions and apllications to Toeplitz linear systems

DI FIORE, CARMINE;ZELLINI, PAOLO
1998-01-01

Abstract

Using the approach of Bozzo, Di Fiore, and Zellini, new matrix displacement decomposition formulas are introduced. It is shown how an arbitrary square matrix A can be expressed as sums of products of Hessenberg algebra matrices and high level (block) matrices whose submatrices are Hessenberg algebra matrices and have variable sizes. In most cases these block factors are block-diagonal matrices. Then these formulas are used in sequential and parallel solution of Toeplitz systems.
1998
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
http://www.sciencedirect.com/science/article/pii/S002437959700044X
DI FIORE, C., Zellini, P. (1998). Matrix displacement decompositions and apllications to Toeplitz linear systems. LINEAR ALGEBRA AND ITS APPLICATIONS, 268, 197-225 [10.1016/S0024-3795(97)00044-X].
DI FIORE, C; Zellini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact