Undoped and Europium-doped titania nanofibers have been fabricated by electrospinning technique, using a single multielement Titanium/Europium source. In this communication we present the synthesis, structural and spectroscopic characterisation of Eu-doped TiO2 nanofibers starting from polyvinylpyrrolidone, titanium tetraisopropoxide (Ti(OiPr)4 and Eu(hfa)3·diglyme (Hhfa = 1,1,1,5,5,5-hexafluoroacetyacetone, diglyme=CH3O(CH2CH2O)2CH3 . The chosen system allowed to investigate a wide compositional range, i.e., from 3 to 10 %mol of Eu3+. Microstructure was studied by means of scanning electron microscopy (SEM), thermal behaviour followed by thermogravimetric and differential thermal analysis (TG-DTA). Phase analysis was performed by means of X-ray diffraction (XRD) and high temperature X-ray diffraction analysis (HT-XRD) up to 1100 C. Luminescence properties were investigated by means of luminescence spectroscopy, using a laser excitation source at 395 nm. All electrospun materials consisted of randomly oriented nanofibers of fairly uniform diameter. The average fiber size was 80–100 nm and 40 nm for, respectively, Eudoped and undoped TiO2 calcinated at 500 C. The presence of Europium shifted toward higher values either the crystallization temperature of anatase and the anatase to rutile phase transition, the latter being accompanied by the formation of the Eu2Ti2O7 phase. The doped samples show a strong luminescence of Eu3+ ions. The emission spectra are dominated by the 5D0 →7F2 emission,suggesting a notable distortion around the Eu3+ ions. The broadening of the bands points to the presence of a relevant inhomogeneous disorder around the Eu3+ sites. The Eu3+ doped TiO2 nanofibers show a higher emission intensity with respect to the PVP/TiO2 ones.
Bianco, A., Cacciotti, I., Fragala, M., Lamastra, F., Speghini, A., Piccinelli, F., et al. (2010). Eu-doped titania nanofibers: processing, characterization and luminescent properties. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 10, 5183-5190 [10.1166/jnn.2010.2215].
Eu-doped titania nanofibers: processing, characterization and luminescent properties
BIANCO, ALESSANDRA;Lamastra, FR;GUSMANO, GUALTIERO
2010-01-01
Abstract
Undoped and Europium-doped titania nanofibers have been fabricated by electrospinning technique, using a single multielement Titanium/Europium source. In this communication we present the synthesis, structural and spectroscopic characterisation of Eu-doped TiO2 nanofibers starting from polyvinylpyrrolidone, titanium tetraisopropoxide (Ti(OiPr)4 and Eu(hfa)3·diglyme (Hhfa = 1,1,1,5,5,5-hexafluoroacetyacetone, diglyme=CH3O(CH2CH2O)2CH3 . The chosen system allowed to investigate a wide compositional range, i.e., from 3 to 10 %mol of Eu3+. Microstructure was studied by means of scanning electron microscopy (SEM), thermal behaviour followed by thermogravimetric and differential thermal analysis (TG-DTA). Phase analysis was performed by means of X-ray diffraction (XRD) and high temperature X-ray diffraction analysis (HT-XRD) up to 1100 C. Luminescence properties were investigated by means of luminescence spectroscopy, using a laser excitation source at 395 nm. All electrospun materials consisted of randomly oriented nanofibers of fairly uniform diameter. The average fiber size was 80–100 nm and 40 nm for, respectively, Eudoped and undoped TiO2 calcinated at 500 C. The presence of Europium shifted toward higher values either the crystallization temperature of anatase and the anatase to rutile phase transition, the latter being accompanied by the formation of the Eu2Ti2O7 phase. The doped samples show a strong luminescence of Eu3+ ions. The emission spectra are dominated by the 5D0 →7F2 emission,suggesting a notable distortion around the Eu3+ ions. The broadening of the bands points to the presence of a relevant inhomogeneous disorder around the Eu3+ sites. The Eu3+ doped TiO2 nanofibers show a higher emission intensity with respect to the PVP/TiO2 ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.